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Anaphoric Pronouns: The Prototypical Case

The latest version released in March is equipped with ... It is sold at ...

La dernière version lancée en mars est dotée de ... Elle est vendue ...
fem.sg.
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Common Assumptions



The antecedent of a referring pronoun is
another noun phrase in the text.

Counterexamples:

Pleonastic pronouns:
But I think it’s a tragedy when one of them doesn’t see the other.

Non-nominal reference:
There’s so much more information about you,
and that’s an important thing [. . . ]

I Evaluation of different pronoun functions
I Annotation of non-nominal coreference
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ParCorFull

A multilingual parallel corpus with rich annotations of coreference.
I Predecessor: ParCor

(Guillou, Hardmeier, Smith and Tiedemann, 2014)
I English, German and French
I 11 TED talks, 8 EU Bookshop docs
I Annotations of pronouns and their direct antecedents

I ParCorFull 1.0
(Lapshinova-Koltunski, Hardmeier and Krielke, 2018)
I English and German
I 20 TED talks, 25 news articles
I Annotation of nominal and non-nominal coreference

I ParCorFull 2.0
(Lapshinova-Koltunski, Ferreira, Lartaud and Hardmeier, 2022)
I English, German, French and Portuguese
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Coreference annotation in ParCorFull

I Anaphoric noun phrases (including split antecedents, but not singletons)
I Nouns with modifiers, personal and demonstrative pronouns, etc. [the new report] –

[the report] – [it]
I Comparative reference

same, more, less, other, . . .
I Indefinite pronouns

anyone, someone, . . .
I Substitution and ellipsis

I Extratextual reference (to slides, props, etc.)
I Temporal and local adverbs

[in the 1920s] – [then]; [in the garden] – [there]
I Event reference
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Event reference

I Reference to events (expressed by verb phrases),
parts of the discourse, etc.

I In the original ParCor, this was a catch-all category.

[Democracy is in trouble], no question about [that], and [it] comes in part from a deep
dilemma. . .

. . . our mission is [to organize the world’s information and make it universally
accessible]. And people always say, is [that] really what you guys are still doing?

[And I thought, why can’t we do that today]? And [that]’s how this project got going.
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Translating a pronoun requires generating
a matching pronoun in the target language.

Counterexample:

But the thing about tryptamines is they cannot be taken orally because they’re
denatured by an enzyme [. . . ] in the human gut [. . . ]

Par contre les tryptamines ne peuvent pas [tryptamines cannot] être consommées par
voie orale étant dénaturé[e]s [being denatured] par une enzyme [. . . ] dans l’intestin de
l’homme [. . . ]

I Recognising and categorising
non-literal translation patterns
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Non-Literal Translation Patterns

I Matching referring expressions across languages
(Lapshinova-Koltunski and Hardmeier, DiscoMT 2017;
Šoštarić, Hardmeier and Stymne, WMT 2018)
I in manually annotated data (ParCorFull)
I in large unannotated corpora

I Matching coreference annotations across languages
(Lapshinova-Koltunski, Loáiciga, Hardmeier and Krielke, CRAC 2019)

I Methodology:
I Automatic word alignment (GIZA++, efmaral).
I Matching chains.
I Finding mismatches in chains (e.g., unaligned words).
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Explicitation and implicitation

I Different referring expressions because of content differences.
I One language has more information than the other.

the French banking giant Société Générale, the owner of the local Komerčni banka
(Commerce Bank)

le géant français Société Générale, propriétaire de la banque tchèque Komerčni banka.
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Accommodation of language differences

I Differences in grammatical systems.
This can often be analysed as obligatory explicitation.

EN: Those are things ∅ you have in common with your parents and with your
children.

DE: [Dinge], [die] Sie mit Ihren Eltern und Kindern gemein haben.
I Differences in linguistic preferences

EN: A reaction to the medication the clinic gave me for my depression left me
suicidal.

DE: Die Medikamente, die sie mir in der Ambulanz gegen meine Depressionen
gaben, führten bei mir zu Selbstmordgedanken.
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Different interpretations of corresponding
referring expressions

We can create [a global parliament of mayors]. [That]’s an idea.

[We can create a global parliament of mayors]. [That]’s an idea.

EN: Think what happens [when we collect all of that data and we can put it together in
order to find patterns we wouldn’t see before]1. [This]1, I would suggest, perhaps [it]1
will take a while, but [this]1 will drive . Fabulous, lots of people talk about .

DE: Was passiert, [wenn wir all diese Daten sammeln und wir sie zusammenfügen
können, um Muster zu erkennen, die wir nicht vorher sehen konnten]1. Vielleicht dauert
[dies]1 ja noch eine Weile, aber [es]1 wird eine Revolution in der Medizin. Fabelhaft -–
sehr viele Leute sprechen [darüber]1.
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Annotation errors

I Annotation errors
I Word alignment errors

I Statistical word alignment is a linguistically ill-defined task.

I Inconsistent interpretation of annotation guidelines
across languages
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Visualisation challenges

I In each language,
we only see
I one chain and
I the properties of one

markable

at a time.
I Very easy to miss

inconsistencies
even in one language.

I Word alignment
is not shown.
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Lessons learnt

I Parallel corpus with rich coreference annotation is a very valuable resource.
I Difficult to achieve consistent annotation quality, especially over long time.
I What would we need?

I Better corpus visualisation/navigation.
I Word alignment with proper linguistic foundation.
I Resources for continuous quality checks and annotator (re)training.
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Referring pronouns agree in gender and number with
their antecedent.

Counterexample:

Notional concord:
So I think Deep Mind, what’s really amazing about Deep Mind is that it can actually –
they’re learning things in this unsupervised way.

I Studying linguistic preferences
across languages and genres
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Understanding Translation

How do the production and interpretation of
referring expressions vary across languages?

Human production study:
Referring back to organisational named entities

Last week, Intel announced the shutdown of the factory.
In the press release,

FC Barcelona won the World Cup three times since 2009.
Next year,

AC/DC achieved international success in 1976.
In the next forty years,

Ongoing work with Luca Bevacqua, Sharid Loáiciga and Hannah Rohde
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Named Entity Reference: Results

FC Barcelona won the World Cup three times since 2009.
Next year, FC Barcelona/the club/it. . .

lexical NPs pronouns

DE
83.3% 16.7%

FR
62.1% 37.9%

EN
25.9% 74.1%
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Singular vs. plural conceptualisation
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Two Studies

Study 1: Constructed stimuli
I Prompt sentences constructed by the authors.
I Four types of named entities: Companies, publishers,

sport teams and music bands.

Study 2: Corpus stimuli
I Prompt sentences were extracted from OntoNotes

and simplified.
I Continuations were constructed to increase chances of eliciting a reference to the

named entity.
I Generally longer and more complex than

the constructed stimuli.
I Unrelated filler items also based on corpus data.
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Generating prompts from corpora

Original:
In the final trading, the House was insistent on setting aside $500 million to carry out
base closings ordered to begin in fiscal 1990.

Prompt:
The House showed insistence on setting aside $500 million to carry out base closings
ordered to begin in fiscal 1990.

In an amended piece of legislation,

Hardmeier, Bevacqua, Loáiciga and Rohde, NEWS 2018
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Continuation Studies: Results

constructed corpus

it 32 24
they 307 113
name 19 11
noun 12 16

total 370 164
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Results including Corpus Study on OntoNotes
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Conclusions

I Good pronoun translation is far more complex than enforcing gender agreement.
I Referring expression use differs significantly across languages.

Good translation should respect target language conventions.
I Genre, register and modality also have strong effects.
I Annotation and exploration is made difficult by the lack of tools.
I ParCorFull 2.0 covers 4 European languages and can be used to study these

phenomena or construct test suites.
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Modelling Cross-Lingual Coreference

Work done with Gongbo Tang
(now at Beijing Language and Culture University)
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Latent Anaphora Resolution for Cross-Lingual Pronoun Prediction

Christian Hardmeier Jörg Tiedemann Joakim Nivre
Uppsala University

Department of Linguistics and Philology
Box 635, 751 26 Uppsala, Sweden

firstname.lastname@lingfil.uu.se

Abstract

This paper addresses the task of predicting the
correct French translations of third-person sub-
ject pronouns in English discourse, a problem
that is relevant as a prerequisite for machine
translation and that requires anaphora resolu-
tion. We present an approach based on neu-
ral networks that models anaphoric links as
latent variables and show that its performance
is competitive with that of a system with sep-
arate anaphora resolution while not requiring
any coreference-annotated training data. This
demonstrates that the information contained in
parallel bitexts can successfully be used to ac-
quire knowledge about pronominal anaphora
in an unsupervised way.

1 Motivation

When texts are translated from one language into
another, the translation reconstructs the meaning or
function of the source text with the means of the
target language. Generally, this has the effect that
the entities occurring in the translation and their mu-
tual relations will display similar patterns as the enti-
ties in the source text. In particular, coreference pat-
terns tend to be very similar in translations of a text,
and this fact has been exploited with good results to
project coreference annotations from one language
into another by using word alignments (Postolache
et al., 2006; Rahman and Ng, 2012).

On the other hand, what is true in general need
not be true for all types of linguistic elements. For
instance, a substantial percentage of the English third-
person subject pronouns he, she, it and they does
not get realised as pronouns in French translations
(Hardmeier, 2012). Moreover, it has been recognised

by various authors in the statistical machine transla-
tion (SMT) community (Le Nagard and Koehn, 2010;
Hardmeier and Federico, 2010; Guillou, 2012) that
pronoun translation is a difficult problem because,
even when a pronoun does get translated as a pro-
noun, it may require choosing the correct word form
based on agreement features that are not easily pre-
dictable from the source text.

The work presented in this paper investigates
the problem of cross-lingual pronoun prediction for
English-French. Given an English pronoun and its
discourse context as well as a French translation of
the same discourse and word alignments between
the two languages, we attempt to predict the French
word aligned to the English pronoun. As far as we
know, this task has not been addressed in the litera-
ture before. In our opinion, it is interesting for several
reasons. By studying pronoun prediction as a task in
its own right, we hope to contribute towards a better
understanding of pronoun translation with a long-
term view to improving the performance of SMT
systems. Moreover, we believe that this task can lead
to interesting insights about anaphora resolution in a
multi-lingual context. In particular, we show in this
paper that the pronoun prediction task makes it possi-
ble to model the resolution of pronominal anaphora
as a latent variable and opens up a way to solve a
task relying on anaphora resolution without using
any data annotated for anaphora. This is what we
consider the main contribution of our present work.

We start by modelling cross-lingual pronoun pre-
diction as an independent machine learning task after
doing anaphora resolution in the source language
(English) using the BART software (Broscheit et
al., 2010). We show that it is difficult to achieve
satisfactory performance with standard maximum-
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Neural coreference models (Lee et al., 2017)
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Cross-lingual coreference model

Motivation: Exploit signal from multilingual text
for better coreference resolution.
I Use second “copy” of coreference system in target language.
I Initialised from pretrained system, with adapter layers.
I Model scores coreference between target-language anaphors and

source-language antecedents.
I Cross-lingual coreference loss:

I Let S = {s1, . . . , sm } be the source mentions and T = {t1, . . . , tn } be the target
mentions.

I The network predicts a score s i j for pairs (s i , t j ).

ĵ = arg max
j

s i j for given i ; L =
m∑
i=1

e−si ĵ
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Cross-lingual coreference model
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Experimental results
OntoNotes; TL data synthetically translated with MT systems from Facebook and
Helsinki

Mention detection Coreference
F ∆ F ∆

English 85.42 – 73.42 –

English–Arabic 86.13 0.71 74.58 1.16
English–Catalan 86.17 0.75 74.81 1.39
English–Chinese 86.02 0.60 74.53 1.11
English–Dutch 86.29 0.87 75.16 1.74
English–French 85.93 0.51 74.37 0.95
English–German 86.02 0.60 74.20 0.78
English–Italian 86.13 0.71 74.65 1.23
English–Russian 86.17 0.75 74.50 1.08
English–Spanish 86.21 0.79 74.50 1.08
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Models with mention attention

New features:
I Mention attention module
I Mention classifiers:

Is this part of a mention?
I Mention loss
I Mention masking:

Only pass mention info
to attention module

Loss ratio: MT : M-src : M-tgt = 10 : 1 : 1
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Experimental results

I WMT English to German (newstest2017)
I Evaluation: BLEU; APT for it, they

Model BLEU Pronouns Ambig. pronouns

Baseline 28.01 60.1 50.4
Ours 28.23 61.2 52.2
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Conclusions

I Cross-lingual data carries information relevant for
coreference resolution.

I Effects on MT/coref performance are very consistent,
but rather small.

I Significant cross-lingual variance in coreference structures
for complex and non-obvious reasons.

I Annotating coreference involves potentially subjective interpretation – cross-lingual
study exposes this.
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Uncertainty Estimation

Work done with Dennis Ulmer and Jes Frellsen

Slide credit: Most of the following slides
were made by Dennis Ulmer.
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Why model uncertainty?

I Trustworthy AI: Systems should be open about what they know and what they don’t.
I Responsible AI: Don’t make decisions on an insufficient basis (stereotypes).
I Uncertainty is particularly important when an uncertain prediction suggests a

different course of action that any confident outcome.
I Escalate to some costlier process.
I Refer decision to human.
I Request further information.
I . . .
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Deep Ensembles

I Training multiple models allows estimating variance of predictions.
I Expensive to train.
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Monte Carlo Dropout

I “Ensembling” via different dropout masks.
I Easy to train, but often not a good approximation.
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Bayes by Backprop

I Learn a Gaussian per parameter.
I Slower training/sampling, difficult convergence.
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Laplace Approximation

I Gaussian approximation around MAP estimate.
I Hessian gives information about curvature.
I Difficult to compute.
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Exploring Predictive Uncertainty and Calibration in NLP:
A Study on the Impact of Method & Data Scarcity

Dennis Ulmer☼ Jes Frellsen� Christian Hardmeier☼
☼Department of Computer Science, IT University of Copenhagen

�Department of Applied Mathematics & Computer Science, Technical University of Denmark
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Abstract

We investigate the problem of determining the
predictive confidence (or, conversely, uncer-
tainty) of a neural classifier through the lens
of low-resource languages. By training mod-
els on sub-sampled datasets in three different
languages, we assess the quality of estimates
from a wide array of approaches and their de-
pendence on the amount of available data. We
find that while approaches based on pre-trained
models and ensembles achieve the best results
overall, the quality of uncertainty estimates can
surprisingly suffer with more data. We also
perform a qualitative analysis of uncertainties
on sequences, discovering that a model’s total
uncertainty seems to be influenced to a large
degree by its data uncertainty, not model un-
certainty. All model implementations are open-
sourced in a software package.

1 Introduction

In 1877, Italian astronomer Giovanni Schiaparelli
described the existence of “canals” on the surface
of Mars, a finding that was described by a contem-
porary as a “very important and perplexing [prob-
lem]” (Young, 1895; p. 355). It later turned out that
the structures, originally termed canali in Italian,
were simply mistranslated, since the word can also
refer to (natural) channels of water. By that point
however, the possibility of irrigation on the red
planet had already sept into popular culture, and is
still being referenced to this day. In the meantime,
translation has become a task that is increasingly
performed by neural networks, which — in the face
of a word such as canali — might simply fall back
on the most likely translation given the training
data. And while the error above seems fairly in-
nocuous, there are more safety-critical scenarios in
which such ambiguities matter and can potentially
have negative real-word consequences. Besides
translation, there also exist other language-based
problems in which the uncertainty surrounding a

Figure 1: Schematic of our experiments. Training
sets are sub-sampled and used to train LSTM-based
models and fine-tune transformer-based ones, which are
evaluated on in- and out-of-distribution test data.

model prediction can convey critical information,
such as medical analyses (Esteva et al., 2019), le-
gal case data (Frankenreiter and Livermore, 2020)
or analyzing job applications (Zimmermann et al.,
2016). Determining model confidence, or, con-
versely, uncertainty, consequently is an important
mean to instill trust in end users and avert harm
(Bhatt et al., 2021; Jacovi et al., 2021). While there
exist many works on images (Lakshminarayanan
et al., 2017; Snoek et al., 2019) and tabular data
(Ruhe et al., 2019; Ulmer et al., 2020; Malinin et al.,
2021), the quality of uncertainty estimates provided
by neural networks remains underexplored in Nat-
ural Language Processing (NLP). In addition, as
model underspecification due to insufficient data
presents a risk (D’Amour et al., 2020), the increas-
ing interest in less-researched languages with lim-
ited resources raises the question of how reliably
uncertain predictions can be identified. This lets us
pose the following research questions:

RQ1 What are the best approaches in terms of un-
certainty quality and calibration?

RQ2 How are models impacted by the amount of
available training data?

RQ3 What are differences in how the different ap-
proaches estimate uncertainty?

2707
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8 models, 3 languages/tasks

Models:
I LSTM and LSTM ensemble
I ST-τ LSTM: Model transitions in finite state automaton
I Variational LSTM and BERT: MC dropout
I Bayesian LSTM: Bayes-by-backprop
I SNGP BERT: Gaussian Process output layer
I DDU BERT: Fit Gaussian Mixture Model on hidden activations

Languages and Tasks:
I Danish: Named entity recognition
I Finnish: Part-of-speech tagging
I English: Intent classification

41
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Calibration

LSTM Ensemble beats 
all BERTs!

LSTM Ensemble on par with 
pre-trained models

LSTM spreads prob. many 
classes

Ensemble and BERTs are 
confidently correct
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How well can uncertainty 
distinguish ID / OOD?

How indicative is 
uncertainty


of model loss?

Except for SNGP, seq.-level 
correlations are negative! 🤯 


(but SNGP training very brittle)

Pre-trained models most 
sensitive to OOD

Bayesian LSTM 
performs best on ID & 

OOD

🐘🏠: How to evaluate 
uncertainty quality w/o gold 

labels?

No superior uncertainty 
metric!
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Evidential Deep Learning

I Instead of training/approximating ensemble,
directly parameterise a distribution over outputs.

I Get uncertainty estimates in a single pass, without MC etc.
I Model represents the accumulation of evidence in the training data.
I For a categorical output distribution (classification),

the model’s output is a Dirichlet distribution (conjugate prior).
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Prior and Posterior Networks: A Survey on Evidential Deep
Learning Methods For Uncertainty Estimation

Dennis Ulmer☼, � dennis.ulmer@mailbox.org
Christian Hardmeier☼, � chrha@itu.dk
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☼IT University of Copenhagen, �Technical University of Denmark, �Pioneer Centre for Artificial Intelligence
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Abstract

Popular approaches for quantifying predictive uncertainty in deep neural networks often in-
volve distributions over weights or multiple models, for instance via Markov Chain sampling,
ensembling, or Monte Carlo dropout. These techniques usually incur overhead by having to
train multiple model instances or do not produce very diverse predictions. This comprehen-
sive and extensive survey aims to familiarize the reader with an alternative class of models
based on the concept of Evidential Deep Learning: For unfamiliar data, they aim to admit
“what they don’t know”, and fall back onto a prior belief. Furthermore, they allow uncer-
tainty estimation in a single model and forward pass by parameterizing distributions over
distributions. This survey recapitulates existing works, focusing on the implementation in a
classification setting, before surveying the application of the same paradigm to regression.
We also reflect on the strengths and weaknesses compared to other existing methods and
provide the most fundamental derivations using a unified notation to aid future research.

1 Introduction

Figure 1: Taxonomy of surveyed approaches, divided
into tractable parameterizations of the prior or poste-
rior on one axis (see Tables 1 and 2 for an overview)
and into approaches for classification and regression on
the other. Regression methods are outlined in Table 3.

Many existing methods for uncertainty estimation
leverage the concept of Bayesian model averag-
ing: These include ensembling (Lakshminarayanan
et al., 2017; Wilson & Izmailov, 2020), Markov chain
Monte Carlo sampling (de Freitas, 2003; Andrieu
et al., 2000) as well as variational inference ap-
proaches (Mackay, 1992; MacKay, 1995; Hinton &
Van Camp, 1993; Neal, 2012), including approaches
such as Monte Carlo (MC) dropout (Gal & Ghahra-
mani, 2016) and Bayes-by-backprop (Blundell et al.,
2015). Bayesian model averaging for neural net-
works usually involves the approximation of an oth-
erwise infeasible integral using MC samples. This
causes the following problems: Firstly, the quality
of the MC approximation depends on the veracity
and diversity of samples from the weight posterior.
Secondly, the approach often involves increasing the
number of parameters in a model or training more
model instances altogether. Recently, a new class
of models has been proposed to side-step this co-
nundrum by using a di�erent factorization of the posterior predictive distribution. This allows computing

1
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Types of uncertainty

Data (aleatoric) uncertainty
Uncertainty inherent in the data (e.g., true ambiguity, annotation error, etc.).
Not reducible by acquiring more data.

Model (epistemic) uncertainty
Uncertainty due to the model not having enough information.
Adding more data should reduce this.
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(a) Categorical distributions pre-
dicted by a neural ensemble on the
probability simplex.

(b) Probability simplex for a con-
fident prediction, for with the den-
sity concentrated in a single corner.

(c) Dirichlet distribution for a case
of data uncertainty, with the den-
sity concentrated in the center.

(d) Dirichlet distribution for a case
of model uncertainty, with the den-
sity spread out more.

(e) Dirichlet for a case of distribu-
tional uncertainty, with the density
spread across the whole simplex.

(f) Alternative approach to distri-
butional uncertainty called repre-
sentation gap, with density concen-
trated along the edges.

Figure 4: Examples of the probability simplex for a K = 3 classification problem, where every corner
corresponds to a class and every point to a Categorical distribution. Brighter colors correspond to higher
density. (a) Predicted Categorical distributions by an ensemble of discriminators. (b) – (e) (Desired)
Behavior of Dirichlet in di�erent scenarios by Malinin & Gales (2018): (b) For a confident prediction, the
density is concentrated in the corner of the simplex corresponding to the assumed class. (c) In the case of
aleatoric uncertainty, the density is concentrated in the center, and thus uniform Categorical distributions
are most likely. (d) In the case of model uncertainty, the density may still be concentrated in a corner, but
more spread out, expressing the uncertainty about the right prediction. (e) In the case of an OOD input,
a uniform Dirichlet expresses that any Categorical distribution is equally likely, since there is no evidence
for any known class. (f) Representation gap by Nandy et al. (2020), proposed as an alternative behavior for
OOD data. Here, the density is instead concentrated solely on the edges of the simplex.

predicting a distribution over Categorical distributions p(fi|x, ◊̂) as in Equation (9).6 In order to classify
a data point x, a Categorical distribution is created from the predicted concentration parameters of the
Dirichlet as follows (this corresponds to the mean of the Dirichlet, see Appendix C.1):

– = exp
!
f◊(x)

"
; fik = –k

–0
; ŷ = arg max

kœK
fi1, . . . , fiK . (11)

Parameterizing a Dirichlet posterior distribution follows a similar logic, as we will discuss in Section 3.4.2.

7
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(a) Iris setosa

(b) Iris versicolor

(c) Iris virginica

1 2

3

Figure 2: Illustration of di�erent approaches to uncertainty quantifying on the Iris dataset, with examples for
the classes given on the left (Figures 2a to 2c). On the right, the data is plotted alongside some predictions
of a prior network (lighter colors indicate higher density) and an ensemble and MC Dropout model on the
probability simplex, with 50 predictions each. Iris images were taken from Wikimedia Commons, 2022a;b;c.

The term Evidential Deep Learning (EDL) originates from the work of Sensoy et al. (2018) and is based on
the Theory of Evidence (Dempster, 1968; Audun, 2018): Within the theory, belief mass is assigned to set
of possible states, e.g. class labels, and can also express a lack of evidence, i.e. an “I don’t know”. We can
for instance generalize the predicted output of a neural classifier using the Dirichlet distribution, allowing
us to express a lack of evidence through a uniform Dirichlet. This is di�erent from a uniform Categorical
distribution, which does not distinguish an equal probability for all classes from the lack of evidence. For
the purpose of this survey, we define Evidential Deep Learning as a family of approaches in which a neural
network can fall back onto a uniform prior for unknown inputs. While neural networks usually parameterize
likelihood functions, approaches in this survey parameterize prior or posterior distributions instead. The
advantages of this methodology are now demonstrated using the example in the following section.

2.4 An Illustrating Example: The Iris Dataset

To illustrate the advantages of EDL, we choose a classification problem based on the Iris dataset (Fisher,
1936). It contains measurements of three di�erent species of iris flowers (shown in Figures 2a to 2c). We
use the dataset as made available through scikit-learn (Pedregosa et al., 2011) and plot the relationship
between the width and lengths measurements of the flowers’ petals in Figure 2.

We train an deep neural network ensemble (Lakshminarayanan et al., 2017) with 50 model instances, a
model with MC Dropout (Gal & Ghahramani, 2016) with 50 predictions and a prior network (Sensoy et al.,
2018), an example of EDL, on all available data points, and plot their predictions on three test points on the
3-probability simplex in Figure 2.4 On these simplices, each point signifies a Categorical distribution, with

4For information about training and model details, see Appendix A.1.
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Uncertainty estimation in NLP

I Some methods have been adapted for NLP.
I Ensembling
I Bayes-by-backprop
I MC dropout

I Few NLP-specific works.
I But. . .

I Mostly proposed for classification tasks.
I Not applicable to really big models (GPT3 ensembles???)
I Not tailored towards NLP-specific challenges

(sequences, sparsity, low-resource languages)
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